Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The interplay between configurational entropy and the enthalpy of ordered structures governs phase stability in compositionally complex alloys. In the refractory alloy Re0.6(NbTiZrHf)0.4, this balance is particularly delicate: pressure stabilizes a disordered body-centred-cubic (bcc) solid solution over the ambient hexagonal Laves phase via a martensitic route. Using in situ laser heating with synchrotron X-ray diffraction in a diamond-anvil cell, we demonstrate that the metastable bcc phase can be controllably transformed into a large-scale 2×2×2 B2-type superstructure with primitive-cubic symmetry (Pm3 ̅m). This long-period ordered phase is crystallographically distinct from conventional B2 ordering in multicomponent alloys, establishing a pathway to achieve chemical ordering from pressure-stabilized solid solutions. More broadly, these findings demonstrate that combining compression with subsequent thermal activation can unlock recoverable three-dimensional superstructures, offering new opportunities to tailor strength, transport properties, and stability in compositionally complex alloys.more » « less
-
Abstract Persulfides (RSS–) and thioselenides (RSSe–) play important roles in biological S and Se transfer reactions, and their interactions with Lewis acidic moieties exert control over reactivity. Here, we report the synthesis and reactivity of mononuclear Zn2+persulfide and thioselenide complexes from a unified synthetic strategy of using isolable dichalcogenide precursors. Highlighting the benefits of replacing S with Se, we use77Se NMR spectroscopy to reveal the effects of Lewis acid coordination (K+, Na+, Zn2+) on the electronic environment of the terminal Se of the thioselenide (R–Sβ–Seα–). Coordination of RSSe–to Zn2+polarizes the Se─S bond, rendering the internal sulfur atom (R–Sβ–Seα–) susceptible to nucleophilic attack and resulting in selenide (Se2–) release. We also prepared a mononuclear Zn2+persulfide complex and probed differences in persulfide nucleophilicity when compared to the parent thiolate. Alkylation of the Zn2+persulfide is considerably faster than the Zn2+thiolate, supporting the proposed nucleophilicity enhancement of persulfides due to the α‐effect, and providing new insights into persulfide reactivity when coordinated to metals. Taken together, these investigations highlight the utility of small molecule synthetic models in advancing insights into the biological chemistry of metal dichaclogenides.more » « less
-
Hydrogen selenide (H2Se) is an emerging bioregulator and precursor to essential selenium-containing biomolecules. We show that aryl isoselenocyanates (ISeC-R) release H2Se upon activation by cysteine, and that electronic substitution can modulate release profiles. We also demonstrate applications to live cell imaging, expanding available tools for investigating H2Se chemical biology.more » « less
-
St_Maurice, Jean_Pierre (Ed.)Abstract Hypotheses concerning processes related to medium‐scale traveling ionospheric disturbances (MSTIDs) are investigated with the application of models and the analysis of observational data. Wave‐packet parameters for MSTIDs from 2011 through 2022 are obtained from OI 6300 Å observations from the Boston University all‐sky imager (ASI) at the Millstone Hill Observatory during periods for which concurrent Millstone Hill (MH) incoherent scatter radar (ISR) observations are available. A combination of a numerical multi‐layer (NML) model for gravity waves (GW) in the thermosphere with the Field‐Line Interhemispheric Plasma (FLIP) model for ionospheric processes and upper‐atmospheric emissions is applied to generate perturbation electron‐density values, which are compared with ISR‐observed perturbation electron‐density values. A detailed comparison is made between model‐generated and ISR‐observed electron density for two cases, and the comparisons show notably good agreement. Twelve other MSTID cases are also described, giving a total of 14 cases. The results confirm that some nighttime MSTIDs at midlatitudes directly correspond to local GWs. They also suggest that some MSTIDs occurring over MH primarily consist of plasma fluctuations without corresponding local neutral fluctuations and that such MSTIDs are more common during winter months. The phase relationship between electron density and neutral vertical velocity variations is examined for two cases. Additionally, the hypothesis that standard thermospheric dynamic molecular viscosity values should be reduced is evaluated, and it is found that this is not supported by the results.more » « less
-
Background Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea. Results Using a comparative approach, we tested if coral microbiomes correlate with disease susceptibility across 425 million years of coral evolution by conducting a cross-species coral microbiome survey (the “Global Coral Microbiome Project”) and combining the results with long-term global disease prevalence and coral trait data. Interpreting these data in their phylogenetic context, we show that microbial dominance predicts disease susceptibility, and traced this dominance-disease association to a single putatively beneficial symbiont genus, Endozoicomonas. Endozoicomonas relative abundance in coral tissue explained 30% of variation in disease susceptibility and 60% of variation in microbiome dominance across 40 coral genera, while also correlating strongly with high growth rates. Conclusions These results demonstrate that the evolution ofEndozoicomonassymbiosis in corals correlates with both disease prevalence and growth rate, and suggest a mediating role. Exploration of the mechanistic basis for these findings will be important for our understanding of how microbial symbioses influence animal life-history tradeoffs.more » « less
-
At ambient conditions, the high-entropy alloy superconductor Re0.6(NbTiZrHf)0.4 exhibits exceptional mechanical properties among high-entropy alloys, with its hexagonal phase achieving nanoindentation hardness of 18.5 GPa. We report on a unique pressure-induced structural transformation from a hexagonal phase to a body-centered cubic (BCC) phase, revealed by synchrotron x-ray diffraction measurements up to 70 GPa. This first-order transition, accompanied by a 6.1% volume collapse, occurs at 44 GPa and results in a BCC structure with random site occupancy by the five constituent elements, which is remarkably retained upon decompression to ambient conditions. The transformation proceeds via a martensiticlike, diffusionless mechanism without elemental segregation, enabled by pressure-induced electronic redistribution and atomic-scale disorder. These findings demonstrate a rare case of metastable phase retention in a chemically complex alloy and offer new insights into structure-stability relationships under pressure.more » « less
An official website of the United States government

Full Text Available